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Trapping of Excitation in the Average 
T-Matrix Approximation 

D. L. Huber ~ 

We investigate the trapping of excitation by a random array of acceptor ions 
embedded in an assembly of donors. The problem is formulated in terms of 
coupled rate equations. Exact results for the fraction of excited donors are 
obtained in the zero and rapid donor-donor transfer limits for arbitrary ratios of 
the donor to trap concentration. The average T-matrix approximation (ATA) is 
introduced to interpolate between these limits in situations where the concentra- 
tion of traps is much less than the concentration of donor ions. In three- 
dimensional systems the ATA reproduces the results of earlier calculations in 
appropriate limits. The extension of the theory to higher trap ~concentration is 
discussed, as are problems connected with the application to one- and two- 
dimensional arrays. 

KEY WORDS: trapping; donor-donor transfer; donor-acceptor transfer; 
average T-matrix approximation; diffusion; random walk. 

1. INTRODUCTION 

Excitation dynamics in the presence of a random array of trapping centers 
continues to be an important topic in condensed matter physics, with 
applications to optical spectroscopy, nuclear magnetic resonance, and 
particle transport. Broadly speaking, the problems can be divided into two 
categories depending on whether the transfer of excitation between individ- 
ual atoms (or molecular units) takes place coherently, as in the case of a 
Frenkel or Wannier exciton, or incoherently (site-to-site hopping). In this 
paper we focus on the incoherent transfer problem. (1,2) 

We consider a situation where the donor atoms form a lattice, with the 
trapping centers or acceptor atoms distributed at random. We assume that 

Presented at the Symposium on Random Walks, Gaithersburg, MD, June 1982. 
Supported by the National Science Foundation--Condensed Matter Theory Grant DMR- 
8203704. 
i Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706. 

345 

0022-4715/83/0200-0345503.00/0 �9 1983 Plenum Publishing Corporation 



346 Huber 

at time t = 0 a small fraction of the donors are in the excited state. Our 
interest is in the fraction of donors still excited at some later time t. Because 
the transfer is assumed to be fully incoherent and the fraction of initially 
excited donors is small we can describe the dynamics by a set of occupation 
probabilities (Pn(t)}, where Pn(t) is the probability that ion n is excited at 
time t, all other donor atoms being in the ground state. The time evolution 
of Pn(t) is governed by the set of coupled rate equations 

de.(t) 
Wn,.en,( t) (1) 

dt \ n r ] n t 

Here Wnn, is the transfer rate from donor n to donor n', and X, is the total 
transfer rate from donor n to all of the traps in the system. We assume that 
the donor-donor  transfer is symmetric (Wnn, = Wn,n) and that there is no 
backtransfer from the traps. 

The relative fraction of excited donors at time t, f(t),  is given by the 
configurational average of the sum of the Pn(t) over the N donors, i.e., (l) 

f ( t )  = P~(t (2) 
1 c 

where ( �9 �9 �9 }c denotes an average over all trap distributions and Pn(t) is a 
solution to (1) with initial condition Pn(0)= 6no. 

Exact solutions of the problem are available in two limiting cases. The 
first of these corresponds to a situation where the donor-donor  transfer is 
negligible on the time scale of interest. In this case we can set W,~ n, equal to 
zero. The function f ( t )  is then given by (2'3) 

f ( t )  = I I ( l  - e + ee -x~ ) (3) 
1 

Here c is the fraction of sites occupied by traps (0 < c < 1) and Xol is the 
rate of transfer from a donor at site o (or l) to a trap at site ! (or o). 
Equation (3) has a simple physical interpretation as the configurational 
average of exp(-Xot) .  If site l is occupied by a trap (which happens with 
probability c), it contributes a factor e x p [ - X j ]  to e x p [ - X o t  ]. If it is not 
occupied by a trap (probability 1 -  c), it contributes a factor of unity. 
Taking the configurational average leads directly to (3). 

The second case pertains to the opposite limit where the transfer of 
excitation among donor ions is (infinitely) rapid in comparison with the 
rate of transfer to the traps. Under these conditions all of the Pn(t) are 
identical for t > 0 so that we obtain (~,4) 

It should be noted that both (3) and (4) have the same initial slope. 



Trapping of Excitation in the Average T-Matrix Approximation 347 

However, in the absence of donor-donor transfer the decay is strictly 
nonexponential for c < 1 whereas in the rapid transfer limit it is exponen- 
tial at all times for all values of c. 

The complexity of the trapping problem becomes evident in the 
intermediate regime where the donor-donor  transfer rate is neither zero nor 
infinity. In this situation there are few exact results for f ( t )  and recourse has 
to be made to approximations. These will be discussed in Sections 2 and 3. 

2. INTERMEDIATE REGIME AND THE AVERAGE T-MATRIX 
APPROXIMATIONS 

In this section we discuss the trapping of excitation in situations which 
lie between the limits of zero and infinitely rapid donor-donor transfer. In 
this regime it is convenient to introduce the laplace transform of the 
relative fraction of excited donors. Denoting the transform of f(t) by f(s) 
we write it in the form 

f ( s )  = [ ,  + M ( s ) ] - '  (5) 

where M(s) can be identified as a self-energy arising from the presence of 
the trapping centers. 

As long as the traps are distributed at random there are no exact 
results for M(s) which are valid for arbitrary values of the trap concentra- 
tion and the ratio of the donor-donor to donor-trap transfer rates. For this 

A 

reason attention has focused on developing approximations for f(s) which 
can be utilized in the analysis and interpretation of experimental data. One 
approach which has proven to be especially useful when there is a low 
concentration of traps is the average T-matrix approximation (ATA). (1) 
The ATA is equivalent to keeping the first term in the expansion of M(s) in 
powers of c, i.e., (s/ 

M(s) --~ cm(s) (6) 

where m(s) is written as the sum 

re(s) = ~ Tz(s ) (7) 
1 

in which Tt(s ) is a solution to the equation 

= Xo,- Xo,  (8 )  
l" 

In (8) got(S) is a lattice Green's function defined by 

1 e x p [  i k . ( r  o - r,)] 
go, (s) = -~ ~ s + W(O) - W(k) (9) 
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where W(k) is the Fourier transform of the donor-donor transfer rate 

W(k) = E Wu'expl ik" ( r t -  rr)]  (10) 
l '  

and k denotes a vector in the Brillouin zone of the donor lattice. The ATA 
can be looked upon as an approximation which treats the interaction with a 
single trap to all orders in the donor-trap transfer rate but which neglects 
interference effects between different traps. 

In the absence of donor-donor transfer we have got = dotS-1. Under 
these conditions it can be shown that Eqs. (5)-(8) reproduce the exact 
result, (3), to first order in c. (1) In the opposite limit, Xol << Wol, we have 
Tl(s ) = Xol (which corresponds to the first Born approximation for the 
t-matrix) and hence 

( )' f (s)  = s + C~Xoz (11) 
l 

which is equivalent to (4). Like (3) and (4) f ( t )  in the ATA has initial 
slope f ' ( 0 ) =  C~Xol. The early-time quasiexponential behavior ( f ( t ) ~  
exp[-f ' (0) t ] )  is followed by a period of nonexponential decay which in 
three dimensions (the behavior in lower dimensions is discussed in Section 
3) evolves into the asymptotic exponential 

For a given value of c, f(t)  lies between the limiting curves associated with 
zero and infinitely rapid donor-donor transfer for all t/> 0. 

In many situations of experimental interest the donor-donor and 
donor-trap transfer rates are not limited to nearest neighbors but fall off 
exponentially or as an inverse power of the separation. Under these 
conditions the exact solution of the t-matrix equation is a formidable 
problem. Fortunately there exist reasonable approximations which apply to 
limiting cases. (1) To illustrate these we consider a system where Xzl, 
= a(rzl,) -6 and Wlr =/3(rlr) -6 (i.e., a dipole-dipole mechanism for both 
donor-trap and donor-donor transfer). When a ~</3 there is only a small 
number of donor ions in the "sphere of influence" of a trap. Under these 
conditions a reasonable first approximation is to neglect the off-diagonal 
elements of the t matrix, which is equivalent to keeping only the terms with 
l = l '  on the right-hand side of (8). When this is done f(s) reduces to ]}i 

f (s) -- ( s + c~,Xo, /[1  + Xotgoo(S ) (13) 
l 

If goo(S) is approximated by (s + l /T),  Eq. (13) becomes identical to the 
"hopping model" of Burshtein (6~ in which ~- is a measure of the time the 
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excitation resides on a given donor ion in the absence of trapping. [Note 
the goo(S) is the laplace transform of the conditional probability that an ion 
excited at t -- 0 is still excited at a later time t. ( 1,2)] 

The second approximation pertains to the opposite limit, a >> fl, where 
t h e r e  is a large number of donors in the sphere of influence of a trap. 
Under these conditions it is appropriate to use a continuum formulation 
where 

Here n is the concentration of traps while T(r,s) satisfies the continuum 
equivalent of (8) 

= x ( r )  - X(r)fdr' g ( r  - r',s)T(r',s) (15) T(r,s) 

where X(r) is the donor-trap transfer rate at separation r. The continuum 
Green's function is given by 

1 dke ik'r 
g(r,s) - (2rr)3 f s + ~ - ~ 5  (16) 

in which the integral is over all of k space. The diffusion constant 
appearing in (16) is expressed as 

D = ~ r Z ,  Wx (17) 
l' 

assuming cubic symmetry. 2 
Recently it has been shown that the integral equation (15) can be 

replaced by an equivalent differential equation. (9) This is done by writing 

T(r,s) = X(r) - X(r) Q(r,s) (18) 

where the auxilliary function Q(r,s) is the solution of the inhomogeneous 
equation 

[ - D V  2 + s + X( r ) ]  Q(r,s) = X(r) (19) 

which is regular at the origin and vanishes at infinity. 

2 Trapping in the presence of anisotropie diffusion has been investigated by P. M. Richards 
(Ref. 7). We can recover his results by using an effective isotropic diffusion constant defined 
by 

l ( )- 1 df~k 

in the ATA equations (Ref. 8). 
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In order to determine the evolution off( t )  it is necessary to solve either 
(15) or (18)-(19) for T(r,s) and then invert the transform. However, in 
three dimensions the asymptotic behavior can be inferred from T(r, 0). We 
have 

f(t)~exp{-n[fdr T(r,0)lt  } (20) 

It can be shown that the integral of T(r, 0) can be expressed as (1) 

f d r  T(r, 0) = 4~rDa s (21) 

where a s is the quantum mechanical scattering length of a particle of 
"mass" h2/(2D) moving in the repulsive "potential" X(r). From (20) and 
(21) we have f ( t ) ~ e x p [ -  4vrDnast], a result first obtained by de Gennes (10) 
in his study of the relaxation of the nuclear magnetization in the presence 
of paramagnetic impurities. 

In concluding this section we emphasize that the results we have 
presented here pertain to a system where the donor atoms form a lattice. If 
the donor array is itself disordered then additional approximations are 
needed. Thus one would use the configurational average of goo(S) in 03)  3 
and an average diffusion constant in (16) and (19). (12) 

3. LOWER DIMENSIONS AND HIGHER CONCENTRATIONS 

In this section we first discuss the trapping of excitation in lower- 
dimensional systems. This discussion is followed by brief comments on 
excitation dynamics at high trap concentration. In the interest of simplicity 
we consider the special case where each trap can receive excitation from a 
single donor at the rate Xoo. In this case Eq. (8) is readily solved for Tl(s ) 
with the result 

~o,Xoo 
r,(s) - 1 + Xoogoo(S) (22) 

A 

From (22) we obtain f(s) in the form 

f ( s ) =  { s +  cXooll + Xoogoo(S) ]- l}  - '  (23) 

In three dimensions, where goo(O) is finite, we obtain f ( t )~exp[-Ft]  as 
t ~ oo. The decay rate F is given by 

r -  cX~176 
1 + Xoogoo(O ) (24) 

3 For an assessment of various approximations for (goo(S))c in dilute systems see Ref. 11. 
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In the limit Xoogoo(O ) >> 1, which is equivalent to the trap being a substitu- 
tional impurity with an effective donor-trap transfer rate equal to the rate 
for donor-donor transfer, F reduces to Cgoo(O )- 1, a result first obtained by 
Rosenstock. (13) [Note that goo(O)-lt is the long-time limit for the mean 
number of lattice sites visited in time t.] As discussed by Weiss, ( 14~ the 
Rosenstock approximation gives reasonable results only for c < 0.05. 

Although the ATA is a useful approximation at low trap concentration 
in three-dimensional systems, it gives rise to qualitatively incorrect results in 
one and two dimensions. In one dimension it yields the asymptotic behav- 
ior f ( t )~ t  -V2 whereas in two dimensions one obtains f ( t )~ t  -l. In both 
cases the anomalous behavior in f(t) reflects the divergence in goo(S) as 
s ~ 0. (15) The asymptotic algebraic decay predicted by the ATA matches 
the exact results obtained for a periodic array of traps in lower dimen- 
sions. (5'16) However, the decay in the presence of a random array of 
trapping centers is quite different. (v'8~ In particular in one dimension one 
has the asymptotic behavior (17) 

f(t)~8(4c2Wt/3~r)l/2exp[-3(~r2c2Wt/4)'/3] (25) 

where W is the nearest-neighbor donor-donor transfer rate. 
As stressed above the ATA is appropriate only at low trap concentra- 

tion. Useful results at higher trap concentration can be obtained by using 
the coherent potential approximation (CPA). (~9,20) In the CPA the self- 
energy, McPA(S), is obtained from the equation 

fd2oo~(Xoo ) [Xoo- MCPA(S) ] 
1 + [~ooo 7 ~ / ~  ~oo(S ) = 0  (26) 

where 

= c8( oo - Xoo)  + (1 - 0)8( oo) 

for the model under consideration while 

(27) 

The CPA self-energy interpolates between the ATA result at low trap 
concentration and the exact result (for the model) at c = 1, M(s)= Xoo. 
Like the ATA it is most accurate in three dimensions. The CPA belongs to 
a class of theories known as effective medium approximations in which the 
excitation is assumed to propagate with a position-independent decay rate 
Mcl, a(s) which is determined self-consistently by requiring that the effect of 
a deviation of the decay rate from McpA(s ) vanishes on the average [cf. Eq. 
(26)1. 

Coo( , )  = goo( ,  + McPn(*)) (28) 
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4. RESPONSE AT FINITE WAVE VECTOR 

Recently, attention has been drawn to the calculation of the spatial 
dependence of the density of excited donors/21,22) In the ATA the configu- 
rational average of the Fourier-Laplace transform Of the density of excited 
donors evolving from a localized initial excitation takes the form (20 

where 

f (k,s) = [ s  + Dk 2 + cm(k,s)] - t  (29) 

m (k, s) = ~ e ik 'r/T 1 (k, s) (30) 
l 

The functions Tl(k, s) are solutions to the equations 

T, (k, s) = X ote - ik.r, _ Xo , ~ gin(s) Tv( s ) (31) 
l "  

A A 

[Note that f(0, s), m (0, s), and 7"l(0, s) correspond to the functions f(s), m (s), 
and Tl(s ) introduced in Section 2.] 

In the continuum limit it is convenient to make a partial wave 
expansion of T provided the donor-trap transfer rate is spherically sym- 
metric. When this is done m(k,s)  is given by 

cm(k,s) = 4~rn ~X(r)r2 dr - X(r)jz(kr r,s)r2 dr (32) 

in whichjt(kr ) denotes a spherical bessel function. The function j~(r,  s) is a 
solution to the inhomogeneous equation 

[ d2 2D d D I ( I + I )  I f [  - D + + sX(r) (r, s) = (2l + 1)X(r)j t(kr ) 
dr 2 r dr r 2 

(33) 

Equation (33) can be solved in closed form for the special case of a "square 
well" transfer rate, X(r) = V o, 0 <<. r <<. R; X(r) = O, r > R. In the limit 
V 0 ~ ~ we recover the results of Bixon and Zwanzig, which were obtained 
by solving the diffusion equation in the presence of a trap with the 
boundary condition that the excitation density vanished for r < R (=) 

^ ( 3s,/2( D )1/2 f (k,s) = s(1 + q~) + \~ -2  

+ --~ eo+Dk 2 1 + ~  I + X R  

where ~ = (4~r/3)nR 3 and X = (s/D).  1/2. Equation (34) can also be used to 
develop a self-consistent theory for f(k, s) which goes beyond the ATA in 
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that  it evolves higher-order terms in the density expansion of the self- 
energy.~ 23) 

5. D ISCUSSION 

The purpose of this paper  has been to review a variety of theoretical 
studies of the t rapping of excitation in systems with r a n d o m  arrays of 
trapping centers. We  emphasize that  we have considered only the incoher- 
ent transfer problem where the transfer of excitation a m o n g  the donors  and 
f rom the donors  to the traps takes place incoherently. In  such a situation it 
is appropriate  to use rate equations to characterize the dynamics.  The 
trapping of excitation in situations where the transfer of excitation takes 
place coherently is a much  more  complicated calculation since one has to 
work directly with the Hamil tonian  (or equivalently the full density ma-  
trix).(24) A n  impor tant  aspect of the problem is the disorder in t roduced by 
the r a n d o m  positioning of the traps. This becomes especially significant 
when there is a high concentra t ion of traps or when the donor  array itself 
lacks translational symmetry.  Finally we ment ion that  the A T A  formalism 
outl ined here has found  recent application in the analysis and interpreta- 
tion of the time development  of the 3P o optical fluorescence of the Pr 3 + ion 
in Pro.95Ndo.05F3, where the N d  3+ serves as a trap. (25'26) 
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